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In many applications of line intersect sampling, transects consist of multiple, connected
segments in a prescribed configuration. The relationship between the transect configuration
and the selection probability of a population element is illustrated and a consistent sampling

protocol, applicable to populations composed of arbitrarily shaped elements, is proposed. It is
shown that this protocol obviates the arbitrary practice of treating multiple intersections of a
single particle as independent probabilistic events and preserves the design-unbiasedness of

Kaiser’s (1983, Biometrics 39, 965–976) conditional and unconditional estimators, suitably
generalized to segmented transect designs. The relative efficiency and utility of segmented
transect designs are also discussed from a fixed population perspective.
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1. Introduction

For discretely distributed populations, line intersect sampling (LIS) is a form of
unequal probability sampling in which population elements crossed by a line transect
are selected into the sample. Since its introduction to ecologists by Canfield (1941),
LIS has been extensively applied in scientific and management surveys of vegetative
cover and abundance, logging residue, and forest fuel loading, as well as mapping
applications. The recent and widespread suspicion of a decline in biodiversity cou-
pled with a need to assess carbon stocks driven by the Kyoto Protocol have
contributed to an unprecedented effort to quantify and monitor coarse woody debris
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(CWD) and downed woody material (DWM). LIS and variants thereof have been
used extensively for this purpose. In many of these applications of LIS, the transects
have consisted of multiple, connected segments with a fixed angular relation between
segments. Examples include the Vegetation Resources Inventory of British Colum-
bia, Canada, in which L-shaped transects are implemented; the Forest Inventory and
Analysis program of the U.S. Forest Service and the National Forest Inventory of
Switzerland, which utilize Y-shaped transects; the Canadian National Forest
Inventory, which prescribes +-shaped transects; and the National Inventory of
Landscapes in Sweden program, which has established square transects. In related
applications, triangular transects have found use in assessments of forest fuels
(Delisle et al., 1988).

Our concern in this article is design-unbiased estimation when using transects with
K>1 connected segments, such as those described above. Specifically we focus on
the necessary field measurements that must be procured in order to ensure design-
unbiased estimation when LIS is applied to discretely distributed populations. Our
concern is motivated by the apparently widespread failure to appreciate that esti-
mators that are unbiased when using straight line (K=1) transects are not unbiased,
in general, when using multi-segmented transects. That is, the practice of treating
LIS with transects of K>1 segments as equivalent to LIS with K single segment
transects generally will result in biased estimation of population parameters. The
practical importance of this matter is underscored by the adoption of multiply
segmented transects by many public agencies, leading to many thousands of samples
from such transects being collected on an ongoing annual basis. It seems prudent,
therefore, to put estimation on the basis of these samples on a sound statistical
footing.

The results reported here extend those of Gregoire and Valentine (2003) by con-
sidering more intricately shaped transects than the K=2, L-shaped transects of
concern to those authors. Moreover, we deal more comprehensively with the issues
presented when a transect intersects a population element in multiple places. In turn,
this is related to the proper measurement of non-convex-shaped elements that are
only partially intersected by the transect. Finally, we establish in this article a dis-
tinction between radial and polygonal transects in LIS – a distinction which has
quite consequential implications both for field measurement and efforts to deal with
edge effect.

Following Kaiser (1983) we take a design-based approach to inference following
LIS, as articulated inter alia by Särndal et al. (1992) and Gregoire (1982). Briefly
stated, the reference distribution from which the statistical properties of estimators
are derived under the design-based paradigm comprises the universe of estimates
induced by the random location, and possibly orientation, of transects permissible
under the sampling design. The population of discrete elements, called particles
henceforth, is regarded as fixed, in the sense that the spatial pattern with which
particles are dispersed over the landscape (or other medium being sampled) is con-
sidered to be non-stochastic. In particular, an assumption of complete spatial ran-
domness of particles is neither necessary nor relevant for purposes of design-based
inference. Attributes of particles, such as their presence or size, likewise are con-
sidered to be fixed, and inference is utterly free of any assumption that attribute
values are the realization of a stochastic process. Randomness enters into the
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inferential procedure solely by the probabilistic inclusion of particles into the sample
as governed by the sampling design. As we mention later, the literature on LIS
historically has been ambiguous in regard to the presumed inferential basis, the early
treatments by Canfield (1941) and Eberhardt (1978) notwithstanding.

2. Notation

Define the population of interest as the collection P ¼ fP1; P2; . . . PNg of discrete
particles distributed over the horizontal region A. Each particle must be connected
in the sense that any two points in Pi can be joined by a path contained entirely in Pi

(see Stewart, 1995, p. 910). Essentially, this means that disjoint objects must be
considered distinct particles. Apart from this requirement, however, particles can
have any shape. In particular, particles can be forked or contain interior hollow
regions. Nothing about the spatial distribution of P on A is assumed: particles may
be spread and oriented in any manner over A and may overlap in their projection
onto A.

Let yi be a fixed characteristic of Pi that in no way depends on whether or how that
particle is intersected by a transect. The characteristic yi can be a binary indicator of
a particular attribute of Pi or simply of its presence on A, but more generally yi will
be taken to reflect a real-valued, measurable attribute of Pi (e.g., particle volume).
Interest typically lies in estimating the aggregate quantity

s ¼
X

i2P
yi;

or some function thereof. Other descriptive parameters of interest may include the
density of P on A:

k ¼ s
A
;

where A is the area of A; and the mean y over P:

l ¼ s
N
:

In the following, we consider estimators of s and k. Estimation of l is discussed by
Gregoire and Valentine (2003).

The sample design consists of M replicated transects on A, each of total length L.
Individual transects are made up ofK connected directed line segments of equal length
L/K. That is, the kth segment of the mth transect has a defined starting point, refer-
enced by the coordinate pair (xmk, zmk). The segments of a transect can be arranged
into radial or polygonal configurations. Radial transects consist of one or more
segments directed outwards from a common vertex, as in the case of straight-line,
L-shaped, or Y-shaped transects (Fig. 1). Polygonal transects are made up of three or
more segments forming a closed figure, such as a triangle or square. More complex
transect configurations, consisting of both radial and polygonal features, have also
been employed in field applications. For example, one transect configuration
prescribed by the U.S. Forest Service for forest fuels inventory consists of six segments
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in a hexagonal arrangement with a seventh segment linking the hexagon to its cen-
troid. The sampling protocol and estimators described below apply to all such tran-
sect configurations, but for expository purposes we consider only designs under which
all M transects share a common radial or polygonal geometry.

The location of the mth transect is referenced by the coordinate pair (xm, zm) on
the horizontal plane of A. On a radial transect this point location refers to the
transect vertex, and thus corresponds to the starting point of each segment (i.e., (xm,
zm)=(xmk, zmk) for all K segments). For specificity, we adopt the protocol that the
segments of a polygonal transect are sequentially established in a counter-clockwise
progression. The location of a polygonal transect can be associated with the starting
point of the initial segment (i.e., (xm, zm)=(xm1, zm1)). Transect locations are pre-
sumed to be selected independently and uniformly at random in A.

Relative to some reference direction, say h=0, let hm ¼ ½hm1; hm2; . . . ; hmK � denote
the vector of orientations of the K segments of the mth transect. The orientation of
each segment ranges over 2p radians, with hm1 2 [0, 2p). For the radial and polyg-
onal transects considered below, hm is completely determined once hm1 is selected.
For example, given hm1 the orientations of the three segments of a Y-shaped or
triangular transect are hm ¼ ½hm1; hm1 þ 2p

3 ; hm1 þ 4p
3 �. The orientation of the reference

segment (i.e., hm1) can be selected at random from a defined distribution or chosen
arbitrarily in advance of sampling.

As noted by Kaiser (1983), estimation of population parameters can proceed con-
ditionally on the transect orientations used or it can proceed unconditionally by jointly
accounting for randomness in the transect locations as well as their orientations.
Conditional on the orientations of theM transects, a design unbiased estimator of s is

bsc ¼ 1

M

XM

m¼1
bscm;

Figure 1. Example intersections of non-convex particle by segmented transects. The convex

hulls of the particles are indicated by dashed lines.
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where bsc
m is a conditionally unbiased estimator of s based on the mth transect alone

(i.e., E½bsc
m j hm� ¼ s). Similarly, but appropriate only for designs wherein hm1 is se-

lected uniformly at random from the interval [0, 2p), an unconditionally design
unbiased estimator of s is

bs u ¼ 1

M

XM

m¼1
bs u
m;

where bsu
m is an unbiased estimator of s based solely on the mth transect. Conditional

and unconditional estimators of k (and l) based on replicated transects are derived
in a similar fashion. Formulae for bsc

m and bsu
m are presented in subsequent sections.

From a design-oriented approach to inference, the variances of the above esti-
mators are functions of the fixed, and presumably unknown, distribution of P on A
through the joint inclusion probabilities of distinct pairs of particles. When transects
are independently replicated over A, bsc is asymptotically normally distributed
(Barabesi and Fattorini, 1998) with variance that is design-unbiasedly estimated by

cvarðbscÞ ¼ 1

MðM� 1Þ
XM

m¼1
ðbscm �bscÞ

2: ð1Þ

Similarly,

cvarðbsuÞ ¼ 1

MðM� 1Þ
XM

m¼1
ðbsum �bsuÞ

2 ð2Þ

provides a design-unbiased estimator of the variance of bsu. Again, variance estimators
for conditional and unconditional estimators of k are obtained by direct substitution.
For large M, (1)a)100% confidence intervals for s can be constructed by

bsc � za
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cvarðbscÞ

q

and

bsu � za
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cvarðbsuÞ

q
;

where za
2
is the a

2 quantile of the standard normal distribution. For moderate M,
confidence intervals can be constructed using the quantiles of Student’s t distribution
or from the percentiles of an empirical distribution of bootstrap estimates for s (or k).

In the following, we assume that edge effects are accounted for such that they do
not impart a design bias into the estimators of population descriptive parameters.
For designs employing radial transects, edge conditions can be handled by adapta-
tions of the methods described in Kaiser (1983) or Gregoire and Monkevich (1994).
Mitigation of edge effects under polygonal transect designs is more complicated as
one or more entire segments can be located exterior to A. A more comprehensive
consideration of methods to deal with edge effects when using segmented transects in
LIS is beyond the scope of this manuscript. Indeed, to simplify further discussion, we
assert that the sampling protocol presented below applies strictly to particles in the
interior of A.
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3. Intersection

A particle is selected into the sample if its projection onto A is intersected by a
transect. When sampling populations composed of convex particles, sampling pro-
tocols follow from straightforward and intuitive definitions of complete and partial
intersections. Let Bi denote the boundary of the vertical projection of Pi on A. If the
vertical projection of Pi is convex, then a segment can intersect Bi at most twice.
McIntyre (1953), who considered populations composed strictly of convex particles,
thus defined a partial intersection as one in which a segment crosses Bi once, and a
complete intersection as one in which Bi is crossed twice. Kaiser (1983) adopted these
definitions and applied them to populations composed of arbitrarily shaped parti-
cles, as have subsequent authors (e.g., Gregoire and Valentine, 2003). Yet these
definitions are insufficient when applied to connected particles of arbitrary shape,
because a segment can span multiple lobes, or cavities, of a non-convex particle
(Fig. 1). When a segment can cross the particle boundary more than twice, more
exacting definitions of complete and partial intersection are required.

We consider Pi to be completely intersected by a segment only if the segment
intersects Bi as many times as a coincident line of infinite length. In Fig. 2, the
boundary of the forked particle may be crossed by a single segment as many as four
times. However, only in Fig. 2a do the segments completely intersect Pi : no linear
extension of these segments would result in another intersection of Bi. More for-
mally, an intersection is complete if the number of times Bi is cut by a transect
segment is equal to the total projection (see Kendall and Moran, 1963, p. 59) of Bi

onto a line orthogonal to the segment over the point (xmk, zmk). We consider any
other type of intersection as partial. Furthermore, we differentiate between two types
of partial intersections on the basis of the location of the starting point of the
segment relative to Bi. Partial intersections that involve the starting point of a seg-
ment occur if (xmk, zmk) is located between the intersections of a coincident line of
infinite length and Bi (e.g., Fig. 2b). That is, if an extension of the segment in the
direction hmk+p (i.e., in the opposite direction) intersects Bi. As shown in Fig. 2b,
this does necessarily imply that (xmk, zmk) is located within the vertical projection of
Pi. Partial intersections that do not involve the starting point occur when (xmk, zmk)
is located anterior to Bi with respect to the direction of the segment (Fig. 2c).

We propose a sampling protocol for any transect configuration and for popula-
tions of arbitrarily shaped particles based on the above definitions. Specifically, a
particle is selected into the sample by the mth transect if it is completely or, with one
restriction, partially intersected by at least one segment. Selection by partial inter-
section is restricted to the case where the intersection does not involve the starting
point of the segment involved. While this protocol may appear abstract in definition,
it is straightforward in implementation: Pi is selected by the kth segment of the mth
transect if the segment crosses a boundary of Pi and if no portion of Pi occurs behind
the starting point (i.e., in the direction hmk+p). Under the protocol, any partial
intersections that involve the starting point of a segment (e.g., Fig. 2b), including
those that could occur if an entire segment were to fall inside a particle, are ignored.

This sampling protocol can be effectively summarized by consideration of a par-
ticle’s inclusion field, i.e., the locus of points in A in which the origin of the transect,
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(xm, zm), must be located in order to intersect Pi and thereby select it into the sample.
As is made evident in the next section, the size and shape of the inclusion field has a
crucial bearing on the probability with which Pi will be intersected by one or more
segments, either completely or partially under the protocol. There is never a need to
demarcate the inclusion field of a particle when implementing LIS, however.

For a single-segment transect with fixed orientation hmk, the forked particle
considered above will be selected into the sample only if (xm, zm) falls in the lightly
shaded region of Fig. 2d. For transects with K>1, however, the shape and area of
the inclusion field will vary with the shape of the particle and the configuration of the
transect, as illustrated in Figs. 3 and 4.

Applying the sampling protocol to a radial transect design, all partial intersections
involving the transect vertex are ignored. However, each segment of a radial transect
generates a subset of the inclusion field, and these subsets can overlap. The gener-
ation of an inclusion field for a Y-shaped transect with fixed orientation hm1 is shown
in Fig. 3: Pi will be selected once if (xm, zm) falls in any of the lightly shaded areas
and twice if (xm, zm) falls in the darker shaded areas. With other types of radial
transects, the inclusion field may contain regions where the corresponding particle is
selected up to K times. For example, van Wagner (1968) suggested the use of a radial
transect with K=3 and hm ¼ ½hm1; hm1 þ p

3 ; hm1 þ 2p
3 �; a particle close to the vertex of

(a)

(b)

(c)

(d)

Figure 2. (a) Complete intersection; (b) partial intersection involving the starting point; (c)
partial intersection not involving the starting point; (d) the inclusion field of the particle Pi

for a single-segment transect of fixed orientation.
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this transect could be spanned by all three segments. Under the protocol we have
established, a particle cannot be selected by a radial transect if (xm, zm) falls within
the vertical projection of Pi on A.

Figure 3. Generation of an inclusion field for a Y-shaped transect; the particle Pi is selected
into the sample once (twice) if the transect is located in the light (dark) shaded regions.
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Under a polygonal transect design, provided the transect does not fall entirely
within the vertical projection of Pi, any type of intersection will lead to selection
because a partial intersection involving the starting point of one segment is also a
partial intersection not involving the starting point of the previous segment. This is
illustrated for a triangular transect of fixed orientation in Fig. 4, but applies to any
type of polygonal transect. Note that for reasonably large L/K (relative to the size of
particles under consideration), the configuration of a polygonal transect will gen-
erally preclude the selection of a particle by more than two segments, though up to K
selections are possible. In practice, visual assessment of the shape of the particle will

Figure 4. Generation of an inclusion field for a triangular transect; the particle Pi is se-
lected into the sample once (twice) if the transect is located in the light (dark) shaded re-
gions.
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generally suffice to determine whether an intersection meets the standards established
by the protocol and, if so, for which segment(s) of the transect.

4. Estimation

The sampling protocol developed in the previous section eliminates any need to
subdivide connected particles, thereby permitting unambiguous identification of
particles and their respective inclusion fields under any segmented transect design.
This eliminates the rather arbitrary practice (see Waddell, 2002) of treating multiple
intersections of a single particle as being equivalent to single intersections of multiple
particles.

Let timk=1 if Pi is selected into the sample by the kth segment of the mth transect
and let timk=0 otherwise; also, let tim� ¼

P
k timk. It is evident from Fig. 2d that

Pðtimk ¼ 1 j hmkÞ ¼
LwiðhmkÞ

AK
;

where wi(hmk) is the width of Pi perpendicular to the kth segment, i.e., the maximum
distance between lines parallel to the segment and tangent to Bi. Also, regardless of
the transect configuration,

E½tim� j hm� ¼
XK

k¼1
E½timk j hmk� ¼

LwiðhmÞ
A

; ð3Þ

where wiðhmÞ ¼
P

k wiðhmkÞ=K. The simplicity of these results derive directly from the
restriction on partial intersections established in the sampling protocol.

A design-unbiased estimator of s conditional on the transect orientation can be
obtained on the basis of (3). Specifically, the conditional estimator given by Gregoire
and Valentine (2003) can be extended to any segmented transect design as

bscm ¼
X

i2P

tim�yi
E½tim� j hm�

¼ A

L

X

i2Lm

tim�yi
wiðhmÞ

; ð4Þ

where the second summation is taken over all particles selected by the mth transect.
This estimator is design-unbiased for a given transect orientation, provided hm is
selected in advance of sampling or in some objective manner. A conditionally
unbiased estimator of k is obtained directly from (4) as bkc

m ¼ bsc
m=A. Note that for

K=1, the linear homogeneous estimator (see Cassel et al., 1977, p. 22) given by (4)
reduces to the more familiar Horvitz–Thompson (HT) estimator. When K>1,
however, the practical difficulties involved in measuring the area of an inclusion field
will prevent a determination of the inclusion probability of Pi, thereby precluding the
use of the HT estimator.

Alternatives to bsc
m that do not condition on the transect orientation can be con-

sidered when hm1 is selected at random from a defined distribution. In particular, if
hmk is selected uniformly at random from the interval [0, 2p) then
E½wiðhmkÞ� ¼ ðEÞ½wiðhmÞ� ¼ ci=p, where ci is the perimeter of the convex hull of the
vertical projection of Pi (Kendall and Moran, 1963, p. 57). With this result, we can
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also extend Gregoire and Valentine’s (2003) unconditional estimator to any seg-
mented transect design as

bsum ¼
X

i2P

tim�yi
E½tim��

¼ Ap
L

X

i2Lm

tim�yi
ci

: ð5Þ

The corresponding unconditional estimator of k is given by bku
m ¼ bsu

m=A. Both bsu
m and

bku
m are design-unbiased when hm1� U[0,2p), regardless of whether hm1 is selected

independently for each transect or whether a single orientation is randomly selected
and used for all transects.

When transects have been randomly oriented, one can opt to use either the con-
ditional or the unconditional estimator, and the choice can be based on the estimated
variances from (1) and (2). However, it may be prudent to consider the practical
implications of this choice prior to sampling. In particular, bsc

m requires measurements
of the perpendicular width of Pi in every direction spanned by the transect regardless
of which segments actually intersect Pi, whereas bsu

m requires only measurement of ci.
For particles that lie approximately flat on A, such as fragments of CWD, it may be
easier to obtain ci (e.g., by measuring the length of rope wrapped taut about Pi) than
wiðhmÞ. On the other hand, as long as the number of segments is not too great, it may
be faster and more accurate to estimate wiðhmÞ when the projection of Pi on A is not
as easily delineated, as when particles consist of tree canopies (e.g., O’Brien, 1989),
or canopy gaps (Runkle, 1992).

5. Estimation using an auxiliary variable

As described above, in certain applications one or other of the conditional and
unconditional estimators given by (4) and (5), respectively, may reduce the mensu-
rational effort required in the field. However, as shown by Kaiser (1983), even larger
gains in practical efficiency can be obtained by the use of an auxiliary random
variable, say qi(hm). By judicious choice of qi(hm) one can obviate the need to
measure yi as well as wiðhmÞ or ci. This can be advantageous when the characteristic
of interest is difficult to measure or its measurement is subject to considerable error.
Generalized to segmented transect designs, Kaiser’s conditional and unconditional
estimators of s are, respectively,

bscm ¼
X

i2P

tim�qiðhmÞyi
E½tim�qiðhmÞ j hm�

; ð6Þ

and

bsum ¼
X

i2P

tim�qiðhmÞyi
E½tim�qiðhmÞ�

; ð7Þ

where

qiðhmÞ ¼
X

k

timkviðhmkÞ
tim�;

ð8Þ
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and vi(hmk) is a random variable that depends on the manner in which Pi is intersected
by the kth segment of the mth transect. The practical value of these estimators is best
illustrated through an example.

Example. Let Pi represent a particle of CWD with volume yi and suppose the
parameter of interest is the total particle volume on the tract A. Denote by vi(hmk)
the cross-sectional area of Pi in the vertical plane containing the kth segment of the
mth transect (Fig. 5). Practical methods for obtaining cross-sectional areas of CWD
and other solids are described by Valentine et al. (2001). With vi(hmk) in (8) so
defined, it can be shown (see Appendix A) that

E½tim�qiðhmÞ j hm� ¼ E½tim�qiðhmÞ� ¼
Lyi
A
: ð9Þ

Substituting this result into (6) and (7) yields

bscm ¼ bsum ¼
A

L

X

i2Lm

XK

k¼1
timkviðhmkÞ;

which is an estimator of the total volume on A that requires only the measurement
of the cross-sectional areas of the particles selected by each segment. Moreover, this
estimator is design-unbiased regardless of whether transect orientations are selected
arbitrarily or at random. The cross-sectional area of Pi must be measured in the
vertical plane of each segment by which it is selected, but measurements of wiðhmÞ
and ci are not required.

The estimator derived in the above example can be viewed as a two-stage esti-
mator of s, with vi(hmk) being the volume of a random slice of Pi of infinitesimal
width. In many instances a similar form for vi(hmk) will be suggested by a geo-
metric conception of the problem (see examples in Kaiser, 1983; Gregoire and
Valentine, 2003), which in turn may be facilitated by interpretation of LIS as an
application of Monte Carlo integration (see Valentine et al., 2001). In such cases,
the variance of the estimator will reflect the variability in the characteristic of
interest both among and within the individual particles on A. Thus, it is possible
that practical efficiencies gained through the use of an auxiliary variable may be
offset by reduced precision. As noted above however, the use of the auxiliary
variable can not only obviate the need to measure yi but also the need to measure
wiðhmÞ or ci. Besides the ensuing savings in time, this could also eliminate potential

Figure 5. Intersection of a forked particle by two segments of a transect; vi(hmk) is the total
cross-sectional area of Pi in the vertical plane containing the kth segment.
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errors associated with the measurement of these dimensions of the vertical pro-
jection of Pi when Pi is a complex three-dimensional entity. Considerably more
field study, similar to that of Ringvall and Ståhl (1999), is needed before the
degradation of precision in estimation resulting from nearly unavoidable mea-
surement error is properly appreciated.

6. Discussion

The practice of treating multiple intersections of a single connected particle as sin-
gular intersections of multiple particles (cf. DeVries, 1973; McRae et al., 1979;
Marshall et al., 2000; Waddell, 2002) renders identifiability of particles impossible: a
forked particle intersected once is considered a single particle, yet when intersected
twice each tine is considered a particle. The sampling protocol described in Section 3
avoids this difficulty altogether. By relying on connectedness as the defining char-
acteristic of a population particle, as in Kaiser (1983), it unambiguously establishes
how to treat multiple intersections of a single particle: if intersection occurs multiple
times along one segment of a transect, the particle is selected at most once; if
intersections occur along multiple segments, the particle can be selected by each
segment.

The impetus to adopt transects with K>1 segments originally arose as an effort to
mitigate ‘‘orientation bias’’ (Warren and Olsen, 1964; van Wagner, 1968; DeVries,
1979). When basing inference on a presumption of particles whose locations are the
realization of a Poisson process and whose orientations are U[0, 2p] realizations, it
was felt that transects with segments with prescribed but alternating orientations
would reduce to an acceptable level the error that resulted from violations of this
spatial model.

The advantages of a design-based inferential approach are twofold. It provides a
more utilitarian basis for inference, inasmuch as biological phenomena rarely (ever?)
exhibit complete spatial randomness. Also it permits inference to proceed condi-
tionally upon transects that are oriented purposefully to take advantage of particles
in P whose orientations generally are in the same direction. To judge from the
published literature, those that have chosen to apply LIS to discretely distributed
populations have often failed to appreciate these advantages: much of the rationale
for multiply segmented transects has implicitly conveyed the hope that ‘‘if we don’t
cross it in this direction, we might in the other direction.’’

The irrelevance of particle orientation to unconditional estimation and of its
utility to conditional estimation in the design-based framework begs the question
of whether multiply segmented transects should be used. Surely their use could be
justified if the precision with which s can be estimated is greater with segmented
transects than it is with straight line transects. This precision is determined by the
distribution of P over A and the transect configuration through the inclusion
probabilities of individual particles and the joint inclusion probabilities of distinct
pairs of particles. For fixed L, multiply segmented transects make for a more
local search around the sample point relative to straight line transects. As such,
estimates of s from segmented transects are likely to be more variable when
particles exhibit a clumped spatial structure, as discussed by Marshall et al. (2000;
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see also Delisle et al., 1988). One reviewer of this manuscript maintained that
segmented transect designs were very efficient for sampling populations composed
of linear particles. Yet to the best of our knowledge, no analytical, empirical, or
simulation study has established such a superiority over straight line transects for
any type of discretely distributed population, and hence we assert that this issue
remains as much an unanswered question as it was when first raised by Kaiser
(1983).

It seems likely, also, that the burden of field measurements is increased with
segmented transects, if for no other reason than the need to orient K>1 transects
of total length L rather than just a single transect of identical length. As
discussed in Section 3, radial segments will also require greater attention to
distinguish partial intersections than is required with straight line transects.
Straight line transects may also be preferred in terms of the relative ease with
which edge effects can be handled, though this is subject of ongoing research.
When adopting more complex transect configurations, the potential for errors of
implementation, as discussed by Ringvall and Ståhl (1999), should be given
utmost consideration.

Our reservations concerning segmented transects in LIS notwithstanding, they are
in widespread use. Design-unbiased estimation of population parameters in LIS with
segmented transects can be ensured by adopting a sampling protocol that reflects the
modified selection probabilities of particles under the design, as we have derived
here.

Appendix A

Assertion (9) in the example of Section 5 follows from the fact that
viðhmkÞ � viðhmk ; lmkÞ, where lmk is the location of the sampling plane along the
perpendicular projection of Pi and lmk j timk¼1 � Uð0;wiðhmkÞÞ. Therefore,

E½tim�qiðhmÞ j hm� ¼
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: ð10Þ

Affleck, Gregoire, Valentine152



Since result (10) does not depend on hm, it is evident that

E½tim�qiðhmÞ� ¼ E½tim�qiðhmÞ j hm� ¼
Lyi
A
:
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